*User Input* ----------SINH (L1/(2*C1))---------- SINH(B74/(2*B101)) sinh((Horizontal Span 1) / 2 / (Initial Catenary Constant 1)) ----------Low Pt of Cond. Formula Breakdown---------- ABS(B72)/(2*B101*ABS(B123)) abs((Initial Height Difference 1)) / 2 / (Initial Catenary Constant 1) / abs([SINH (L1/(2*C1))]) ----------ASINH(LP Bkdwn 1)---------- ASINH(B124) asinh((Low Pt of Cond. Formula Breakdown 1)) ----------[Low Pt of Cond. (m) (Pole 2->X1) Pole 2 = High]---------- B74/2+B101*B125 (Horizontal Span 1)/2 + (Initial Catenary Constant 1)*(ASINH(LP Bkdwn 1) ----------Low Pt of Cond. (m) (Pole 2->X1) Pole 2 = Low---------- B74/2-B101*B125 (Horizontal Span 1)/2 - (Initial Catenary Constant 1)*(ASINH(LP Bkdwn 1) ----------Resultant Height Change 1 (Pole 2 -> Pole 1)---------- B72 + H15 (Initial Height Difference 1) + (*Height Change*) ----------Low Pt of Cond. (m) (Pole 2->X1)---------- IF(B73>0,B200,B201) let: a = Resultant Height Change 1 (Pole 2 -> Pole 1) b = [Low Pt of Cond. (m) (Pole 2->X1) Pole 2 = High] c = [Low Pt of Cond. (m) (Pole 2->X1) Pole 2 = Low] if(a > 0) b else c ----------SINH (L2(/2*C1))---------- SINH(B92/(2*B108)) sinh( (Horizontal Span2) / 2 / (Initial Catenary Constant 2) ) ----------Low Pt of Cond. Formula Breakdown---------- ABS(B90)/(2*B108*ABS(B138)) abs((Initial Height Difference 2)) / 2 / (Initial Catenary Constant 2) / abs(([SINH (L2(/2*C1))])) ----------ASINH(LP Bkdwn 2)---------- ASINH(B139) asinh(Low Pt of Cond. Formula Breakdown 2) ----------Low Pt of Cond. (m) (Pole 2->X2) Pole 2 = High---------- B92/2+B108*B140 (Horizontal Span 2)/2 + (Initial Catenary Constant 2)*ASINH(LP Bkdwn 2) ----------Low Pt of Cond. (m) (Pole 2->X2) Pole 2 = Low---------- B92/2-B108*B140 ----------Low Pt of Cond (m) (Pole 2->X2)---------- IF(B90>0,B141,B142) let: a = Initial Height Difference 2 b = Low Pt of Cond. (m) (Pole 2->X2) Pole 2 = High c = Low Pt of Cond. (m) (Pole 2->X2) Pole 2 = Low if(a > 0) b else c ----------COSH((L1-(LP 2->X1))/C2)---------- (EXP((B74-B202)/B178)+EXP(-(B74-B202)/B178))/2 let: a = ((Horizontal Span 1) - ([Low Pt of Cond. (m) (Pole 2->X1)]))/(Final Catenary Constant) (pow(e, a) + pow(e, -a))/2 ----------COSH((LP 2->X2)/C2)---------- COSH(B143/B108) let: a = Low Pt of Cond (m) (Pole 2->X2) cosh(a/(Initial Catenary Constant 2) ----------COSH((L1-(LP 2->X1))/C1)---------- COSH((B74-B128)/B101) Let: a = Low Pt of Cond (m) (Pole 2->X1) cosh(((Horizontal Span 1)-(a))/(Catenary Constant 1)) ----------COSH((LP 2->X1)/C2)---------- (EXP(B202/B178)+EXP(-B202/B178))/2 (Pow(e, B202/B178) + Pow(e, -B202/B178))/2 let: a = Low Pt of Cond. (m) (Pole 2->X1) b = Final Catenary Constant (pow(e, a/b) + pow(e, -a/b))/2 ----------Intial Height Difference 1---------- -H3*sin(H4*pi/180) -(*Span L1*)/sin(radians(*Support Angle S1*)) ----------Intial Height Difference 2---------- -H8*sin(radisn(H10)) -(*Span L2*)/sin(radians(*Support Angle S2*)) ----------Horizontal Span 1---------- H3*COS(radians(H4)) (Span L1) * cos(radians(Support Angle 1)) ----------Horizontal Span 2---------- H8*COS(radians(H10)) (Span L2) * cos(radians(Support Angle 2)) ----------Resultant Height Change 1 (1->2)---------- B72 + H15 (Initial Height Different 1) + (*Height Change*) ----------Resultant Height Change 2 (2->3)---------- B90 + H15 (Initial Height Difference 2) ----------Resultant Angle 1---------- ATAN(-B73/B74) ATAN(-(Resultant Height Change 1)/(Horizontal Span 1)) ----------Resultant Angle 2---------- ATAN(-B91/B92) ATAN(-Resultant Height Change 2/Horizontal Span 2) ----------Resultant LOS Span 1---------- B74/COS(B75) (Horizontal Span 1)/COS(Resultant Angle 1) ----------Resultant LOS Span 2---------- B74/COS(B75) (Horizontal Span 2)/COS(Resultant Angle 2) ----------Total Conductor Length [1->3]---------- B102+B109 (Conductor Length 1) + (Conductor Length 2) ----------Final Catenary Constant---------- SQRT((POWER(B74,4)/B77+ POWER(B92,4)/B95)/(24*(B114-B77-B95))) SQRT((POWER(Horizontal Span 1,4)/(Resultant LOS Span 1) + POWER(Horizontal Span 2,4)/Resultant LOS Span 2)/(24*((Total Conductor Length [1->3]) - (Resultant LOS Span 1)-(Resultant LOS Span 2)))) ----------Horizontal Tension---------- B59 * B178 (*Conductor Mass*) * (Final Catenary Constant) ----------Is there enough SLACK? [Theoretical]---------- IF((B114-B77-B95)>0,"Yes","No") if(B114 - B77 - B95 > 0) Yes else No let: a = Total Conductor Length (1 -> 3) b = Resultant LOS Span 1 c = Resultant LOS Span 2 if(a - b - c > 0) Yes else No ----------Tangential Tension (kg) (Pole 1->X1)---------- B59*B178*B206 let: a = COSH((L1-(LP 2->X1))/C2) (Conductor Mass) * (Final Catenary Constant) ----------Final Tangential Tension (Pole 2 -> X1)---------- B59 * B178 * B208 let: a = COSH((LP 2->X1)/C2) (*Conductor Mass*) * (Final Catenary Constant) * (a) ----------Final Tangential Tension (Pole 2 -> X2)---------- B59 * B178 * B223 let: a = COSH((LP 2->X2)/C2) (*Conductor Mass*) * (Final Catenary Constant) * (a) --------------------------------------------------Final Values-------------------------------------------------- ----------Sufficient Sag?---------- B250 =IF(AND(B248="Yes",B193="Yes"),"Yes","No") if(B248 && B193) Yes else No if((UTS %) < 30% && (Is there enough SLACK? [Theoretical])) Yes else No ----------% of UTS---------- if(B193 == "No") return "-" IF(B209>B224,(B209*9.8067/B60*100),(B224*9.8067/B60*100)) if(B209 > B224) B209*9.8067*B60*100 else B224*9.8067*B60*100 let: a = Final Tangential Tension (Pole 2 -> X1) b = Final Tangential Tension (Pole 2 -> X2) c = Conductor UTS (N) d = (a > b) ? a : b d * 9.8067 * c * 100 ----------Sag 1---------- B185 B185 = Final Sag 1 POWER(B74,2)/(8*B178) Power((Horizontal Span 1), 2) / (8 * (Final Catenary Constant)) ----------Tension 1 (T1)---------- B207 Final Tangential Tension (Pole 1 -> X1) ----------Tension 2 (T2)---------- B209 Final Tangential Tension (Pole 2 -> X1) ----------Tension 3 (T3)---------- B224 Final Tangential Tension (Pole 2 -> X2) ----------Tension 4 (T4)---------- B224 Final Tangential Tension (Pole 2 -> X2) ----------Sag 2---------- B190 B190 = Final Sag 2 POWER(B92,2)/(8*B178) Power((Horizontal Span 2), 2) / (8 * (Final Catenary Constant)) ----------RF + 25%---------- B242 B242 = Resultant Force + 25% (SQRT(B243*B243+B239*B239))*1.25 let: a = Final Horizontal Force b = Final Vertical Force 1.25 * SQRT(power(a, 2) + power(b, 2)) ----------HF + 25%---------- B244 B243*1.25 Final Horizontal Force * 1.25 ----------VF on rig + 25%---------- B241 (B239+B245) * 1.25 ((Final Vertical Force) + (Final Tag Line VF)) * 1.25 ----------Tag line + 25%---------- B246 (B243/SIN((90-H16)*PI()/180))*1.25 ((Final Horiztonal Force) / sin(radians(90-(*Tag Line Angle*)))) * 1.25 ----------VF + 25% (check)---------- B240 B239*1.25 (Final Vertical Force) * 1.25